

Tetrahedron Letters 41 (2000) 3801-3803

TETRAHEDRON LETTERS

## Phorboxazole synthetic studies: the C3–C15 bis-oxane segment

Patrick B. Greer and William A. Donaldson \*

Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA

Received 23 February 2000; revised 28 March 2000; accepted 30 March 2000

## Abstract

The enantioselective synthesis of the C3–C15 bis-oxane segment of the phorboxazoles has been accomplished from 3-*t*-butyldiphenylsilyloxypropanal in 9 steps (>90% ee). © 2000 Elsevier Science Ltd. All rights reserved.

The phorboxazoles A and B (**1a** and **b**) are isomeric macrolides isolated from the marine sponge *Phorbas* sp.<sup>1a</sup> In addition to exhibiting antifungal activity against *Candida albicans*, both phorboxazoles gave mean  $GI_{50}s < 8 \times 10^{-10}$  M against most of the 60 tumor cell lines in the NCI panel. The complex structure of **1** consists of four oxane rings, two oxazole rings, 15 asymmetric centers, and a conjugated diene segment. The complete structure was assigned on the basis of NMR spectral studies, Mosher ester data, degradation, and model synthesis.<sup>1</sup> The outstanding biological activity of **1**, combined with its complex structural architecture, has led to significant activity by a number of research groups,<sup>2</sup> and a total synthesis by Forsyth's group.<sup>3</sup> Recent reports by Hoffmann,<sup>2c</sup> Smith<sup>2d</sup> and Pattenden<sup>2e</sup> have prompted us to report our own efforts on the synthesis of the C3–C15 bis-oxane segment **2**.



Lewis acid catalysed diene-aldehyde cyclocondensation<sup>4</sup> of **3** with **4** in the presence of  $BF_3 \cdot Et_2O$ , followed by brief treatment with  $CF_3CO_2H$  gave dihydropyrone *rac*-**5** (Scheme 1). In our hands attempted asymmetric cyclocondensation by a number of literature procedures proved capricious.<sup>5</sup> For this reason, establishment of optical activity was deferred to a later stage. Oxymercuration/reduction of **5** followed by reduction [LiAlH(OtBu)<sub>3</sub>] and acylation gave **6**. Reaction of **6** with allyl

<sup>\*</sup> Corresponding author.

<sup>0040-4039/00/\$ -</sup> see front matter  $\,$  © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(00)00530-X

trimethylsilane/TMSOTf/CH<sub>3</sub>CN<sup>6</sup> gave the  $\alpha$ -C-glucoside **7**, which upon ozonolysis gave the aldehyde *rac*-**8**. The synthesis of a similar aldehyde was reported by Hoffmann's group<sup>2c</sup> beginning from 8-oxabicyclo[3.2.1]octan-3-one (11 steps), and by Smith's group<sup>2d</sup> beginning from 2,4-pentandione (12 steps); our route to **8** is significantly shorter (six steps).



Scheme 1. (P=TBDPS)

Chiral allylation of *rac*-**8** with *B*-allyldiisopinocampheylborane (prepared from (-)-(IPC)<sub>2</sub>BOMe),<sup>7</sup> followed by oxidative work up with NaBO<sub>3</sub>, gave a separable mixture of the diastereomers (+)-**9** and (-)-**10** (41 and 42%, respectively). The absolute stereochemistry of each alcohol at C11 was assigned as (*S*) on the basis of the relative chemical shifts of their (*R*)- and (*S*)-Mosher's esters (>90% de each).

Ring closing metathesis<sup>8</sup> has recently found utility in the preparation of unsaturated  $\delta$ -lactones.<sup>9</sup> To this end, esterification of (–)-**10** with acryloyl chloride gave (–)-**11**, which upon treatment with with Grubbs' catalyst (0.3 equivalents) gave the unsaturated pyrone (–)-**2**.<sup>10</sup>

In summary, the C3–C15 bis-oxane segment of the phorboxazoles has been prepared in nine steps. Studies directed toward the preparation of other portions of the phorboxazoles continues in our laboratory.

## Acknowledgements

The authors are grateful to the Marquette University Graduate School and the Marquette University Research Incentive Fund for financial support. P.B.G. is the recipient of a Johnson Wax research fellowship. Partial financial support was provided by the National Institutes of Health (GM-42641). The high resolution mass-spectral determinations were made at the Washington University Resource for Mass Spectrometry.

## References

- 1. (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126–31; (b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422–23; (c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7897–80.
- C3–C15 bispyran segment: (a) Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1997, 62, 5672–73; (b) Williams, D. R.; Clark, M. P.; Berliner, M. A. Tetrahedron Lett. 1999, 40, 2287–90; (c) Wolbers, P.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905–14; (d) Smith III, A. B.; Verhoest, P. R.; Minbiole, K. P.; Lim, J. J. Org. Lett. 1999, 1, 909–12; (e) Pattenden, G.; Plowright, A. T. Tetrahedron Lett. 2000, 41, 983–86. For other references see Ref. 2e.

- 3. Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597-98.
- 4. Danishefsky, S.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380-1419.
- 5. On one occasion asymmetric LACDAC using the Keck procedure gave (-)-5 (ca. 90% ee, 19% yield). Numerous attempts to repeat this result were unsuccessful. (a) Keck, G. E.; Li, X.-Y.; Krishnamurthy, D. J. Org. Chem. 1995, 60, 5998–99; (b) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1986, 108, 7060–67; (c) Togni, A. Organometallics 1990, 9, 3106–13; (d) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.; Krishnan, K. Tetrahedron: Asymmetry 1996, 7, 2165–68.
- 6. Hosomi, A.; Sakata, Y.; Sakurai, H. Tetrahedron Lett. 1984, 25, 2383-86.
- 7. Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092–93.
- 8. Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2037–56; Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–50.
- Nicolaou, K. C.; Rodriguez, R. M.; Mitchell, H. J.; van Delft, F. L. Angew. Chem., Int. Ed. Engl. 1998, 37, 1874–76; Ghosh, A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39, 4651–54; Cossey, J.; Bauer, D.; Bellosta, V. Tetrahedron Lett. 1999, 40, 4187–88; Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C. Tetrahedron Lett. 2000, 41, 583–86.
- 10. Compound (-)-**2**: [*α*]<sub>D</sub> -38 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.68–7.61 (m, 4H), 7.46–7.32 (m, 6H), 6.77 (ddd, *J*=3.3, 5.3, 9.6 Hz, 1H), 5.97 (br d, *J*=10.1 Hz, 1H), 5.06 (tt, *J*=4.5, 9.0 Hz, 1H), 4.52 (m, 1H), 4.24 (dq, *J*=4.6, 9.1 Hz, 1H), 3.97 (tt, *J*=4.2 Hz, 8.4 Hz, 1H), 3.81–3.63 (m, 2H), 2.36 (m, 2H), 2.28 (ddd, *J*=5.5, 9.3, 15.3 Hz, 1H), 2.03 (s, 3H), 1.97 (td, *J*=3.1, 12.7 Hz, 1H), 1.86–1.62 (m, 5H), 1.39 (td, *J*=9.2, 12.9 Hz, 1H), 1.02 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 170.3, 164.1, 144.9, 135.5, 133.8, 129.6, 127.7, 121.4, 75.0, 67.2, 66.4, 65.9, 60.2, 38.1, 36.8, 36.2, 34.4, 28.7, 26.8, 21.2, 19.2.